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The interaction of an isolated spherical particle with an isotropic turbulent flow is
considered using direct numerical simulations (DNS). The particle Reynolds number
is varied from about 50 to 600 and the particle diameter is varied from about 1.5 to 10
times the Kolmogorov scale. The Reynolds number based on the Taylor microscale of
the free-stream turbulent field considered here is 164. The DNS technique employed
here is the first of its kind to address particle–turbulence interaction and it resolves the
smallest scales in the free-stream turbulent flow and the complex vortical structures
in the particle wake. The primary objective of this paper is to present new results
on the effect of the free-stream turbulence on the particle wake and vortex shedding,
and the modulation of free-stream turbulence in the particle wake. The parameters of
the present simulations are comparable to those of the experimental study by Wu &
Faeth (1994a, b), and agreement between the present computational results and the
experimental measurement is demonstrated.

The effect of free-stream turbulence on the mean and instantaneous wake structure
is studied. The time-averaged mean wake in a turbulent ambient flow shows a lower ve-
locity deficit and a flatter profile. However, in agreement with the experimental results
of Wu & Faeth the mean wake in a turbulent flow behaves like a self-preserving
laminar wake. At Reynolds numbers below about 210 the effect of free-stream tur-
bulence is to introduce wake oscillations. For Reynolds numbers in the range 210 to
280, free-stream turbulence is observed to promote early onset of vortex shedding.
The nature of the shed vortices is somewhat different from that in a uniform flow.
Increasing the free-stream turbulence intensity suppresses the process of vortex
shedding, and only marginally increases the wake oscillation. The modulation of free-
stream turbulence in the wake is studied in terms of the distribution of kinetic energy
and RMS velocity fluctuation. The free-stream energy lost in the wake is recovered
faster in a turbulent ambient flow than in a uniform ambient flow. The energy of the
velocity fluctuation is enhanced in the wake at low free-stream intensities, and is
damped or marginally increased at higher intensities. The fluctuation energy is not
equi-partitioned among the streamwise and cross-stream components. The RMS
streamwise fluctuation is always enhanced, whereas the RMS cross-stream fluctuation
is enhanced only at low free-stream intensities, and damped at higher intensities.

1. Introduction
Turbulence modulation by particles is an important aspect of two-phase flow

research. It has been well established that the addition of particles can increase or
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reduce the level of turbulence in the fluid phase. In a dilute suspension there are several
mechanisms that contribute to turbulence modulation: (i) enhanced dissipation due to
the presence of particles, (ii) transfer of kinetic energy to the fluid from the particles,
(iii) formation of wakes and shedding of vortices behind the particles. The relative
importance of these mechanisms depends on the parameters of the problem: particle-
to-turbulence length-scale ratio, particle Reynolds number, particle-to-fluid density
ratio, etc. When particles are smaller than the Kolmogorov scale, their Reynolds
number is generally less than unity, and only the first two mechanisms are significant.
In this range, particles draw energy from the large scales thereby causing dissipation
at these scales. The motion of particles, in turn, returns energy to small scales causing
energy enhancement at these scales. For larger particles, the third mechanism is also
important since fluctuations created by wake oscillation and vortex shedding may
add energy to the fluid turbulence.

In numerical studies of turbulence modulation, the particles are often modelled as
point forces (Squires & Eaton 1991; Elghobashi & Truesdell 1993; Boivin, Simonin &
Squires 1998). In the interest of simulating the effect of a very large number of
particles the details of flow at the microscale around each particle is ignored. This
approach becomes increasingly accurate for particles of size much smaller than the
Kolmogorov scale. But there are many situations where the particle size is of the
order of Kolmogorov scale or larger, and correspondingly the particle Reynolds
number is larger than unity. The effect of finite particle size, particle wake, and vortex
shedding are important in this range. Hetsroni (1989) suggested that in this range
natural shedding of vortices from the particle, above a particle Reynolds number
of about 400, is mostly responsible for turbulence augmentation. Experiments and
recent numerical simulations show that vortex shedding starts at a somewhat lower
Reynolds number of around 280 (Magarvey & Bishop 1961; Natarajan & Acrivos
1993; Johnson & Patel 1999; Tomboulides & Orszag 2000). It is however not known
how the natural vortex shedding process is influenced by free-stream turbulence.

Mittal (2000) recently performed direct numerical simulations of a sinusoidally
oscillating uniform flow over a single stationary particle. By systematically varying the
amplitude and frequency of the free-stream oscillation, he showed that natural vortex
shedding is not the only mechanism of turbulence enhancement. He observed that
at Reynolds numbers below 300, oscillation in the free-stream generates a resonant
oscillation in the wake, which enhances the kinetic energy in the wake. A flow visualiz-
ation of the wake showed that at a Reynolds number as low as 150, �-shaped vortices
are formed which have completely different topology from those observed in natural
vortex shedding. Above a Reynolds number of about 300, turbulence enhancement in
the wake is primarily by natural vortex shedding. But as the strength of free-stream
oscillation increases, the resonance mechanism can be dominant. The spectrum of
energy in a turbulent flow is, however, quite broad, and the three-dimensional structure
of turbulent flow cannot be represented by simple sinusoidal oscillations.

By analysing a collection of experimental results, Gore & Crowe (1989) proposed
that the ratio of particle diameter to characteristic size of the energy-containing
eddies in the carrier phase is the key parameter that dictates turbulence modulation.
They concluded that when this ratio is above 0.1, particles augment turbulence, and
attenuate it otherwise. Numerical simulations of finite-sized particles in wall turbulence
by Pan & Bannerjee (1997) generally support the above proposal. Table 1 lists the
parametric range of some experimental works on particle–turbulence interaction. A
variety of flows, such as a particle-laden jet, a pipe flow, a channel flow and a
backward-facing step, have been studied. In many of these experiments the particle
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Author Experiments d/η d/λ I 〈Rer〉

TMS Pipe flow 2–60 0.13–2 0.05–0.15
WF Homogeneous turbulence 1.2–12 0.13–2 0.04–0.07 135–1560
PF Homogeneous turbulence 1.2–8 0.02–0.08 38–545
TMTKN Particle-laden jet 0.05–0.15 100–750
LE Particle-laden jet 7–29+

KFE Channel flow 0.57–3+ 0.05–0.2 5–20
BGM Stirred vessel 1.5–35 0.2–40

Table 1. Some experimental works on particle–flow interaction and their parametric range.
Here + indicates that the number is τp/τf , the ratio of particle response time to fluid time scale.
TMS: Tsuji et al. (1984); WF: Wu & Faeth (1994a, b); PF: Parthasarathy & Faeth (1990);
TMTKN: Tsuji et al. (1988); LE: Longmire & Eaton (1992); KFE: Kulick et al. (1994); BGM:
Brucato et al. (1998). d = particle diameter, η = Kolmogorov scale; λ = Taylor microscale.
〈Rer〉 is particle Reynolds number based on the mean relative velocity, and I is the intensity
of the free-stream turbulent flow defined as the ratio of the RMS turbulent fluctuations and a
steady oncoming uniform flow (defined in § 2).

size is bigger than the Kolmogorov scale, or of the order of the Taylor microscale.
These studies support the general trend that large particles and increased mass loading
augment turbulence.

Of particular relevance to the present study is the work of Wu & Faeth (1994a)
where the effect of free-stream homogeneous turbulence on the particle wake and
vortex shedding is considered. They observed that at a low free-stream turbulence
intensity of about 4% the wake becomes turbulent even at low Reynolds numbers, and
the streamwise RMS velocity fluctuations in the wake are substantially more enhanced
than the cross-stream fluctuations. At higher Reynolds numbers, the natural vortex
shedding was not disturbed by free-stream turbulence, and the RMS fluctuations in
the streamwise and cross-stream directions were comparable. Wu & Faeth (1994b)
considered the effect of increasing the intensity of free-stream turbulence. Their
results suggest that at moderate-to-high particle Reynolds numbers with increasing
turbulence intensity, the increase in cross-stream fluctuation is reduced.

In the present work we consider the interaction of a free-stream isotropic turbulent
flow with a single isolated stationary spherical particle. The present numerical
simulations, thus, complement the experiments of Wu & Faeth (1994a). Parameters,
such as particle-to-turbulence length scale and particle Reynolds number, chosen for
the present investigation are in the range of those employed by Wu & Faeth (1994a) in
their experiment (see table 1). The range of the particle Reynolds number considered
here is 58 to 610, and the ratio of the particle diameter to Kolmogorov scale d/η

is 1.53 to 9.59. The microscale Reynolds number of the free-stream turbulent flow
is kept fixed at 164 for all the cases. The range of the particle Reynolds number
considered in our study covers three different regimes of wake evolution in a uniform
flow: steady axisymmetric wake, steady non-axisymmetric wake, and unsteady vortex
shedding. In the non-axisymmetric and unsteady regime, the wake exhibits complex
three-dimensional vortical structures. The wake structure can be expected to become
further complicated in the presence of free-stream turbulence.

Any numerical method aimed at understanding particle–turbulence interaction
must be able to fully resolve the wake structure. We employ a direct numerical
simulation (DNS) technique that uses a high-resolution fully spectral methodology
for this purpose. The DNS methodology resolves the complete details of the particle
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wake, as well as all the scales of free-stream turbulence. The objective of this paper
is to present results on the effect of free-stream isotropic turbulence on mean and
instantaneous wake structure. Particular attention will be paid to understanding how
free-stream turbulence influences vortex shedding, and consequently, how free-stream
turbulence is modulated. The particle-to-particle and wake-to-wake interaction effects
are not considered here. The DNS technique and the results presented here are the
first of their kind on particle–turbulence interaction.

2. Simulation technique
We consider a stationary particle subjected to a frozen isotropic turbulent field

U(X) superimposed on a uniform flow V . The isotropic turbulent field is obtained
from a separate computation by Langford (2000) using a 2563 grid in a cubic box.
The field is periodic in all three directions and hence can be extended to any arbitrary
large volume. The important length and velocity scales of the isotropic turbulence
(non-dimensionalized in terms of Kolmogorov length and velocity scales, η and vk) are
as follows: RMS of the turbulent velocity fluctuation (Urms/vk) is 6.5, the periodic box
size (L/η) is 757, Taylor microscale λ/η is 25.2. The single parameter that characterizes
this isotropic turbulent field is the microscale Reynolds number Reλ =164.

An instantaneous realization U(X) of the isotropic field is taken, where (X, Y, Z)
represents a fixed reference frame. The turbulent field is superposed on a steady
uniform free stream V . In other words, the turbulent field U(X) is swept over the
stationary particle at velocity V . Thus in a reference frame attached to the particle,
the frozen turbulent field appears as both space- and time-varying. Without loss of
generality we assume that V is oriented along the X-axis. The computational domain
attached to the particle is a spherical domain (r, θ, φ) whose outer radius RO is 30
times the radius of the particle. The undisturbed ambient flow, as seen by the particle
as V + U(x + Xp(t)), is specified at the inflow section of this outer boundary. Here
Xp(t) = Xp(0) − V t is the instantaneous location of the centre of the particle in the
frame of the isotropic field. A schematic view of the computation domain attached to
the particle and the precomputed turbulent field is shown to scale in figure 1 for the
case of d/η = 10. In general, the grid points of the spherical computational domain
attached to the particle do not coincide with the grid points of the (2π)3 cubic box in
which the isotropic turbulent field is computed. Thus the turbulent velocity field U(X)
has to be interpolated on to the outer boundary of the spherical domain. In order to
retain spectral accuracy, the interpolation is done using the Fourier summation.

It must be stressed that here we use an instantaneous three-dimensional field
of precomputed isotropic turbulence to supply the turbulent inflow condition for
the particle. Instead, an inflow could have been constructed as a uniform flow
with superposition of a spectrum of modes with time-varying amplitudes to mimic
the desired turbulence properties. Although somewhat computationally complicated,
the application of the precomputed frozen isotropic box turbulence as the inflow
condition provides a well-defined turbulent ambient flow which is characterized by a
single parameter, the microscale Reynolds number.

In the spherical domain attached to the particle, the governing (continuity
and Navier–Stokes) equations are solved by a direct numerical simulation. A
Fourier–Chebyshev collocation scheme in the spherical coordinates (d/2 � r � R0,

0 � θ � π, 0 � φ � 2π) is used for the spatial discretization, and a two-step time-
split scheme is used for the temporal discretization. Specifically, we use Chebyshev
collocation in the radial direction, and Fourier collocation in the azimuthal direction.
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Figure 1. Schematic of the particle–flow configuration. Drawn to the true scale, a particle of
d/η = 10 is shown here. The large circle surrounding the particle represents the outer boundary
of the spherical computational domain attached to the particle. The outer box represents the
periodic box in which the isotropic turbulent flow is generated. Contours of one cross-stream
velocity component scaled by the mean relative velocity 〈|V r |〉 are shown for free-stream
turbulent intensity I = 0.1.

In the tangential (θ) direction, sine or cosine expansions are used. Further details
about the collocation method are given in Bagchi (2002) and Bagchi & Balachandar
(2002). At the outflow boundary of the spherical domain, a non-reflecting boundary
condition described by Mittal & Balachandar (1996) is used. On the surface of the
particle no-slip and no-penetration conditions are satisfied. The distribution of the
grid points is non-uniform: they are clustered near the surface of the particle and
in the wake region. The grid resolution is chosen to satisfy two criteria: first, the
size of the largest grid spacing in the spherical domain is less than that of the grid
used to simulate the isotropic turbulent field, in order to guarantee resolution of
the free-stream turbulence; second, the grid is adequate to resolve the thin shear
layers and the wake structures generated by the particle. Typical grids used in the
simulation have 141 points in the radial direction, 160 in the θ-direction and 128 in
the φ-direction.

In order to obtain well-converged statistics, the entire length L of the cubic box
of turbulence is passed over the particle several times. This ensures that any initial
transience from the start-up decays, and that a long-time periodic behaviour is
established. The length of the turbulence box can vary from about 150 to 1000 times
the diameter of the particle. A typical dimensionless time-step �t |V |/d used in the
simulations is 0.0005. Thus the total number of time-steps for which time integration is
performed is of the order of 106. This combined with the high grid resolution renders
the computations very expensive. A typical computational time for a simulation is
about 20 000 CPU hours on Origin2000 supercomputers using 32 processors.
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Case d/η d/λ d/Λ 〈Rer〉 I Ĩ

Case 1 1.53 0.061 0.003 107 0.1 0.093
Case 2 1.53 0.061 0.003 58 0.2 0.171
Case 3 3.84 0.152 0.008 261 0.1 0.096
Case 4 3.84 0.152 0.008 114 0.25 0.219
Case 5 9.59 0.381 0.019 610 0.1 0.103
Case 6 9.59 0.381 0.019 241 0.25 0.259

Table 2. Parametric range of the present study. Λ is the integral scale and Ĩ is the ratio of the
RMS turbulent fluctuations and the mean relative velocity between the particle and the flow.

The time-averaged mean quantities are obtained by averaging over a time T

required to sweep the periodic box of turbulence past the stationary particle. The
mean quantities are denoted by the symbol 〈〉. Accumulation of statistics is performed
by storing the velocity field at regular time intervals. The two key input parameters
of the simulation are the non-dimensional particle size, d/η, and the relative strength
of free-stream turbulence, measured in terms of I = Urms/|V |. The other important
parameter is the particle Reynolds number, 〈Rer〉 = |〈V r〉|d/ν, which can be expressed
in terms of the above two input parameters as

〈Rer〉 =
d/η

Urms/V
Urms

vk

|〈V r〉|
V

. (2.1)

The Reynolds number is defined in terms of the mean relative velocity, where
V r = V + U(Xp(t)) is the instantaneous relative velocity between the particle and the
undisturbed ambient flow measured at the centre of the particle and |〈V r〉| is the mean
obtained by time-averaging over T . Note that although the isotropic turbulent velocity
field averaged over the entire box is guaranteed to be zero, the mean turbulent velocity
seen by the particle, 〈U(Xp(t))〉, may be non-zero due to the limited volume sampled
by the particle and as a result |〈V r〉| �= V . The ratio |〈V r〉|/V is thus generally around
1, and its precise value depends on the section of isotropic turbulence passed over
the particle. The ratio Urms/vk depends on the isotropic turbulence and in the present
simulation its value is fixed at 6.5. Table 2 presents the values of d/η, 〈Rer〉 and I for
the six different simulations considered in this study. In all the cases considered the
particle is bigger than the Kolmogorov scale but smaller than the Taylor microscale.
Also shown in the table is Ĩ = Urms/|〈V r〉|. For each of the six cases shown in table 2
a companion simulation was also performed at the same mean Reynolds number,
〈Rer〉, but in a uniform flow. Thus results from a total of 12 simulations will be
discussed below.

The accuracy of the numerical scheme used here has been tested in a number
of situations, from uniform turbulence-free flows to shear flows to turbulent flows.
These results are reported in Bagchi (2002) and Bagchi & Balachandar (2002) for
non-turbulent cases, and in particular in Bagchi & Balachandar (2003) for the six
turbulent flow simulations to be reported here. Specifically, in Bagchi & Balachandar
(2003), we discuss the grid-independence, the decay of energy spectra, the effect of
the size of the computation boundary, and the effect of changing the time-averaging
window T . Hence, they will not be repeated in this paper. Additional comparisons
of our DNS results with the experiments of Wu & Faeth (1994a, b) are given in the
next section (figures 4 and 21) which show good agreement between the two.
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Figure 2. Mean wake structure. For each figure, the top half is the turbulent inflow case,
and the bottom half is the uniform inflow case. (a) Case 5 (d/η = 9.59, 〈Rer〉 = 610);
(b) case 6 (d/η = 9.59, 〈Rer〉 = 241); (c) case 3 (d/η = 3.84, 〈Rer〉 = 261); (d) case 1 (d/η = 1.53,
〈Rer〉 = 107).

3. Results and discussion

3.1. Mean wake

Mean streamlines are shown in figure 2 for cases 1, 3, 5 and 6. They are obtained
by averaging the instantaneous velocity field in time and in the azimuthal direction
φ (0 � φ � 2π). The wake structure in free-stream turbulence is compared with that
in zero-turbulence uniform flow at the same Reynolds number. The results show that
the mean recirculation region is shorter in a turbulent flow than in a uniform flow.
Quantitative results on wake length are shown in figure 3. The general trend is that
the wake length is shortened as the level of turbulence increases, and the effect is
more substantial at high 〈Rer〉 than at low 〈Rer〉.

The mean streamwise velocity along the x-axis is shown in figure 4 for case 1
(d/η = 1.53, I =0.1, 〈Rer〉 = 107) and case 5 (d/η = 9.59, I = 0.1, 〈Rer〉 =610). The
results for non-turbulent free stream at the corresponding Reynolds numbers are also
shown. For both cases, the streamwise velocity along the axis is higher in the turbulent
flow than in the non-turbulent flow, due to enhanced mixing in the wake in the
presence of free-stream turbulence. The effect is more pronounced at lower 〈Rer〉 than
at higher 〈Rer〉, since in the latter case the wake is chaotic even in a uniform flow. Also
shown in figure 4 is the comparison of the DNS results with the experimental results
obtained by Wu & Faeth (1994a). While the agreement is good, a perfect match is
not obtained. We note that the intensity of the free-stream turbulence considered in
the experiment is less than in our DNS study. Thus, it is not surprising that the wake
velocity recovers at a slower rate in their case than in the DNS.
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Figure 3. Effect of turbulence on the length Le of the recirculation region. Solid circles are the
uniform-flow results. �, Case 1 (d/η = 1.53, I = 0.1, 〈Rer〉 = 107); �, case 3 (d/η = 3.84, I = 0.1,
〈Rer〉 = 261); �, case 4 (d/η =3.84, I = 0.25, 〈Rer〉 = 114); �, case 5 (d/η = 9.59, I = 0.1,
〈Rer〉 = 610); �, case 6 (d/η = 9.59, I =0.25, 〈Rer〉 = 241).
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Figure 4. Mean streamwise velocity along the x-axis. DNS results: (a) case 1 (d/η =
1.53, I = 0.1, 〈Rer〉 = 107); (b) case 5 (d/η =9.59, I = 0.1, 〈Rer〉 = 610). —–, Turbulent flow;
- - - - -, uniform flow. �, Experimental results (Wu & Faeth (1994a). The experimental
data for case 1 were obtained at 〈Rer〉 = 135, d/η = 1.25, Ĩ = 0.04, and for case 5 at 〈Rer〉 =

610, d/η = 5.9, Ĩ = 0.04.
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Figure 5. Mean velocity deficit in turbulent flows at different streamwise locations
compared to the Gaussian profile. (a) Case 1 (d/η = 1.53, I = 0.1, 〈Rer〉 = 107), (b) case 3
(d/η = 3.84, I =0.1, 〈Rer〉 = 261), (c) case 5 (d/η = 9.59, I = 0.1, 〈Rer〉 = 610). Solid line:
Gaussian profile (3.1); �, x/a =10; �, x/a = 15; �, x/a = 20.

It was shown in the experiment of Wu & Faeth (1994a) that the particle wake in a
turbulent flow behaves like a laminar wake and follows the simple law

ud

ud0

= exp[−(y/yref )
2/2] (3.1)

where ud is the mean velocity deficit, ud0 is the mean velocity deficit at the wake
centreline, and yref is the cross-stream location where the mean velocity deficit becomes
e−1/2 times ud0. In figure 5 we plot ud/ud0 obtained from the simulations for different
x locations along with the reference Gaussian profile given above. In agreement with
the experimental results of Wu & Faeth (1994a), the present DNS results show that
the turbulent wakes behave like self-preserving laminar wakes.

The centreline velocity deficit, ud0, in a laminar wake decays as 1/x. In figure 6
we plot the DNS result for the turbulent flow cases, and for the uniform flow case
at 〈Rer〉 =610, along with the theoretical prediction. The collapse of the data in the
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Figure 6. Mean velocity deficit along the wake centreline. Solid line represents 1/x decay of
the self-preserving laminar wake. Symbols: �, uniform flow at 〈Rer〉 = 610; �, case 1 (d/η =
1.53, I = 0.1, 〈Rer〉 = 107); �, case 3 (d/η = 3.84, I =0.1, 〈Rer〉 = 261); �, case 4 (d/η =
3.84, I = 0.25, 〈Rer〉 = 114), �, case 5 (d/η = 9.59, I = 0.1, 〈Rer〉 = 610).
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Figure 7. Half-width of the mean wake in uniform and turbulent flow. �, case 1;
�, case 3; �, case 5.

far-wake region further supports the laminar-like behaviour of the particle wake in
turbulent flow. The half-width of the mean wake defined as yref = Lw is shown in
figure 7. In the case of turbulent flows, the wake is wider and expands more rapidly
than in a uniform flow.
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Figure 8. Azimuthal vorticity in uniform flow. (a) 〈Rer〉 = 58, (b) 〈Rer〉 = 107, (c) 〈Rer〉 = 261,
and (d) 〈Rer〉 = 610. For (d) the flow is unsteady and hence contours at one time instant are
shown.

3.2. Time-dependent wake response

In the range of particle Reynolds number considered here, the wake in a uniform
flow exhibits three different structural regimes. For 〈Rer〉 < 210 the wake remains
steady and axisymmetric, and the recirculation region appears as a toroidal vortex.
At around 〈Rer〉 = 210, the first bifurcation occurs, and a non-axisymmetric wake
appears in the form of two distinct thread-like vortical structures. The vortex structure
remains symmetric about a plane passing through the centre of the particle. The
double-threaded wake persists up to 〈Rer〉 ≈ 270, beyond which unsteady vortex
shedding appears. In this regime, three-dimensional structures in the form of vortex
loops interconnected by streamwise elongated structures are generated. The planar
symmetry is maintained in the wake even at a 〈Rer〉 as high as 610. Figures 8 and
9 show the azimuthal vorticity on the (x, y)-plane, and the three-dimensional wake
structure, respectively, for the uniform free stream. For the case of 〈Rer〉 =610, results
at one time instant are shown, since the flow is unsteady. The three-dimensional
structure is extracted by an iso-surface of swirling strength, defined as the imaginary
part of the complex-conjugate eigenvalue of the velocity gradient tensor (Zhou et al.
1999). In these computations the (x, y)-plane emerges as the plane of symmetry in
both the 〈Rer〉 =261 and 610 cases.

The time-dependent response of the wake to free-stream turbulence is shown in
figures 10 to 12. Owing to free-stream turbulence, the wake is unsteady even at
the lowest 〈Rer〉 of 58 considered here. Figure 10 shows contours of azimuthal
vorticity on a single plane containing the x-axis for the different cases at a particular
instant in time. The iso-surface of swirling strength shown in figure 11 displays the
three-dimensional structure of the wake for the different cases. For selected cases the
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Figure 9. Three-dimensional vortex topology in uniform flow at (a) 〈Rer〉 = 261 and
(b) 〈Rer〉 = 610. For (b) the flow is unsteady, and so one time instant is shown.

three-dimensional wake structure is displayed at two different time instants in order to
illustrate its variability over time. In case 1 (d/η = 1.53, I = 0.1, 〈Rer〉 = 107), the toro-
idal vortex observed in a uniform flow is not greatly disturbed by free-stream turbu-
lence. Occasionally a single or a double-threaded structure appears, which decays
quickly as it advects downstream. The dominant effect of free-stream turbulence
for this case is side-to-side time-dependent oscillation of the wake. For instance in
figure 10(a) the wake can be observed to significantly tilt downward from the x-axis.
The wake oscillation primarily arises out of the large-scale fluctuation in the free
stream. The tilted wake in figure 10(a) can be considered as indicative of the downward
tilting of the free stream at that instance. The oscillation of the wake in a turbulent
flow is further illustrated in figure 12 where contours of zero streamwise velocity on
the (x, y)-plane passing through the centre of the particle are shown at different times.
Also shown are the zero streamwise velocity contours for the time-averaged velocity.
The rear-end of the contour indicates the rear-most point of the recirculation region.
The side-to-side movement of the wake is clear in figure 12(a). The length of the
recirculation region and the separation point also vary in time. As can be expected
the time-dependent wake significantly departs from axisymmetry. The behaviour of
case 2 at 〈Rer〉 = 58 is similar to that of case 1 and is dominated by wake oscillation.

In case 3 (d/η =3.84, I = 0.1, 〈Rer〉 =261), the vorticity contours appear to be
strongly influenced by free-stream turbulence. Wake oscillation is present, but
more importantly, the shear layers now interact. As a result of this interaction
isolated regions of vorticity detach from the sphere and are shed as wake vortices
at regular interval. The steady double-threaded wake observed at a comparable
Reynolds number in the uniform flow (see figure 9a) is significantly affected by
free-stream turbulence. The two threads do not maintain their integrity, and they
are now interconnected in a complex manner and elongated further downstream.
Sometimes these regions of streamwise vortices are broken by free-stream turbulence
and form �-shaped vortices. As will be seen below in velocity spectra, the
shedding of vortices occurs at a preferred frequency. However, the structure of
wake vortices induced by free-stream turbulence is somewhat different from those
resulting from natural vortex shedding that occurs at supercritical Reynolds numbers.
Nevertheless, the wake vortices in case 3 are observed to persist for a long distance
downstream.



Response of a particle wake to a turbulent flow 107
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(d )

(e)

( f )

Figure 10. Azimuthal vorticity for turbulent flow cases. (a) Case 1 (d/η =1.53, I = 0.1, 〈Rer〉 =
107), (b) case 2 (d/η = 1.53, I = 0.2, 〈Rer〉 = 58), (c) case 3 (d/η = 3.84, I = 0.1, 〈Rer〉 = 261),
(d) case 4 (d/η =3.84, I = 0.25, 〈Rer〉 = 114), (e) case 5 (d/η = 9.59, I = 0.1, 〈Rer〉 = 610),
(f ) case 6 (d/η = 9.59, I = 0.25, 〈Rer〉 = 241).

With further increase in turbulence intensity to I = 0.25 for the intermediate size
particle (case 4), 〈Rer〉 decreases to 114. As a result, the unsteadiness of the wake
is dominated by wake oscillation and the behaviour is similar to that observed for
cases 1 and 2. The streamwise elongated vortical regions disappear. However, the
formation of large �-shaped vortices is still observed. Again note that the topology
of these vortices is very different from that observed under natural vortex shedding in
a uniform flow. Hence the subcritical vortex shedding process induced by free-stream
turbulence is distinct from the natural vortex shedding process.
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Figure 11. Three-dimensional vortex topology in turbulent flow. (a1, a2) case 1 (d/η = 1.53,
I = 0.1, 〈Rer〉 = 107). (b) case 3 (d/η = 3.84, I = 0.1, 〈Rer〉 = 261). (c) case 4 (d/η =3.84, I =
0.25, 〈Rer〉 = 114). (d1, d2) case 5 (d/η = 9.59, I = 0.1, 〈Rer〉 = 610). (e) case 6 (d/η = 9.59,
I = 0.25, 〈Rer〉 = 241).



Response of a particle wake to a turbulent flow 109

(a) (b)

Figure 12. Wake oscillation shown by contours of zero streamwise velocity. The thick line is
the contour obtained from the time-averaged velocity, and the thin lines are instantaneous
contours at different times. (a) Case 1 (d/η =1.53, I = 0.1, 〈Rer〉 = 107), (b) case 6 (d/η = 9.59,
I = 0.25, 〈Rer〉 = 241).

For case 5 (d/η = 9.59, I = 0.1, 〈Rer〉 =610) the vorticity contours indicate strong
unsteady vortex shedding in the wake. However, in contrast to the uniform flow
the shear layers are not stretched in the streamwise direction. Rather, they are
shortened in length and broken into isolated patches of vorticity which quickly
dissipate downstream. The three-dimensional wake structure exhibits unsteady vortex
shedding similar to the case of uniform flow. However, the organized structures of
interconnected vortex loops and streamwise vortices observed in the uniform flow
(figure 9) are significantly distorted by free-stream turbulence. The vortex loops and
streamwise connectors do not maintain their integrity any longer, and they are broken
into smaller structures, which then quickly dissipate downstream. This is indicative
of significantly enhanced fluctuations in the wake in the presence of free-stream
turbulence.

In case 6 (d/η = 9.59, I = 0.25, 〈Rer〉 =241), the shear layers indicate strong wake
oscillation, and a weaker disorganized vortex shedding process. It is evident from
figure 11(e) that at this higher free-stream turbulence intensity of I =0.25, the vortex
loops completely disappear, and the streamwise vortices are more reminiscent of
the distorted double-threaded vortices seen earlier at the lower Reynolds numbers.
In essence, free-stream turbulence is most influential in the intermediate range
(210 < 〈Rer〉 < 270) when the wake becomes unsteady with shedding of �-vortices
as opposed to a steady double-threaded wake. The above results on wake structure
for the different cases are summarized in table 3. These results are in agreement
with those of Mittal (2000). As discussed before, Mittal (2000) also observed that at
intermediate 〈Rer〉 the effect of turbulence is strong and �-shaped vortices are shed,
while at higher 〈Rer〉, natural vortex shedding is dominant.

3.3. Spectra of near-wake and free-stream velocity traces

Next we consider the spectra of the velocity traces in the near-wake region and in the
free stream for all three particle sizes considered at I = 0.1 (figure 13). In the near-wake
region, the velocity traces are first obtained at a point on the x-axis that is located
at 2.5d from the centre of the particle. The free-stream velocity traces are obtained
from the instantaneous relative velocity V + U(Xp(t)) between the particle and the
undisturbed ambient flow measured at the centre of the particle Xp(t). The spectra
of the velocity traces are shown in figure 13 plotted with respect to the Strouhal
number St = f d/|V r | where f is the frequency of oscillation. The spectra are obtained
by Fourier transformation of the velocity traces collected over the time period T taken
by the box of isotropic turbulence to pass over the particle. For the smallest particle
size (case 1: d/η =1.53, I = 0.1, 〈Rer〉 =107), the amplitude of oscillation of the
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Case d/η I 〈Rer〉 Wake in uniform flow Wake in turbulent flow

1 1.53 0.1 107 • Steady • Oscillating
• Axisymmetric • Nearly axisymmetric

about instantaneous
relative velocity

• Shear layers do not interact

2 1.53 0.2 58 • Steady • Oscillating
• Axisymmetric • Nearly axisymmetric

about instantaneous
relative velocity

• Shear layers do not interact
• Amplitude of oscillation

nearly same as in case 1

3 3.84 0.1 261 • Steady • Unsteady vortex shedding
St = 0.12

• Non-axisymmetric • �-shaped vortices
• Double-threaded wake • Non-axisymmetric
• Shear layers do not interact • Complex wake topology

• Double-threaded wake
is distorted and elongated
further downstream

• Shear layers interact

4 3.84 0.25 114 • Steady • Unsteady vortex shedding
• Axisymmetric • �-shaped vortices

• Shedding is weaker
than case 3

• No double-threaded wake

5 9.59 0.1 610 • Unsteady vortex shedding • Unsteady vortex shedding
• Coherent structure • Irregular shapes

• Quickly dissipate downstream
• Streamwise elongated • Shear layers are

shear layers shortened and broken
into smaller vortices

• St = 0.17 • St = 0.17

6 9.59 0.25 241 • Steady • Unsteady, strongly oscillating
• Non-axisymmetric non-axisymmetric
• Double-threaded wake • No distinct

double-threaded structure
• Shear layers do not interact • Shear layers interact

and break into smaller vortices

Table 3. Summary of results on the effect of turbulence on the wake structure.

streamwise velocity in the near-wake region is increased for nearly all frequencies.
The cross-stream spectrum, however, does not show any significant change and decays
as in the free stream.

At the intermediate particle size of d/η = 3.84 (case 3), the amplitude of oscillation
in the streamwise velocity increases at all frequencies, while that in the cross-stream
velocity increases only at high frequencies above the shedding frequency. For larger
particle at d/η =9.59, a substantial increase in both the streamwise and cross-stream
components can be observed.
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Figure 13. Spectra of the velocity traces for I =0.1. ———–, Near wake; - - - - - - -,
free stream. (a) Streamwise velocity; (b) cross-stream velocity. Top: case 1 (d/η = 1.53, I =
0.1, 〈Rer〉 = 107), middle: case 3 (d/η = 3.84, I = 0.1, 〈Rer〉 = 261), bottom: case 5 (d/η = 9.59,
I = 0.1, 〈Rer〉 = 610).

Similar results for the case of the higher turbulence intensity (I = 0.2 and 0.25)
are shown in figure 14. The amplitude of free-stream oscillation has now increased
due to higher values of I . But the velocity traces in the wake do not show any
substantial increase compared with the previous case of I = 0.1. The spectra of both
the cross-stream and streamwise velocities in the wake overlap with the corresponding
spectra in the free stream.

For the small particle (d/η = 1.53) the spectra decay without any indication of
characteristic frequency. As discussed above, the Reynolds numbers associated with
the small particle (107 for I =0.1 and 58 for I =0.2) are sufficiently low that wake
oscillation is the dominant mechanism. Wake oscillation is in response to free-stream
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Figure 14. Spectra of the velocity traces for I = 0.2 and I = 0.25. ———–, Near wake;
- - - - - - -, free stream. (a) Streamwise velocity; (b) cross-stream velocity. Top: case 2
(d/η = 1.53, I = 0.2, 〈Rer〉 = 58), middle: case 4 (d/η = 3.84, I = 0.25, 〈Rer〉 = 114), bottom:
case 5 (d/η = 9.59, I = 0.25, 〈Rer〉 = 241).

turbulence and has no intrinsic frequency. The cross-stream velocity spectrum for the
intermediate particle (d/η = 3.84, I =0.1, 〈Rer〉 = 261) shows a local peak at around
St= 0.12. There is no vortex shedding in a uniform flow at this 〈Rer〉. However,
if the shedding frequency observed at supercritical Reynolds numbers were to be
extrapolated to 〈Rer〉 =261, the corresponding Strouhal number can be estimated
to be quite close to 0.12. Thus there is evidence to support early onset of vortex
shedding in the presence of free-stream unsteadiness. This result is in agreement with
the findings of Mittal (2000). At the higher free-stream turbulence intensity (case 4)
there is modest peak in the streamwise velocity spectrum at St =0.1, which could be
associated with the �-vortices seen in figure 11(c), but a definitive signature of vortex
shedding, usually present in cross-stream velocity spectra, is absent.
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For the largest particle at I = 0.1 the cross-stream velocity shows a strong peak at
St = 0.17 and somewhat weaker peaks at St =0.08 and 0.03. A companion simulation
for uniform flow past a sphere at 〈Rer〉 = 610 was performed to compare the results
with turbulent and non-turbulent cases. The velocity trace and the spectra for the
uniform flow at 〈Rer〉 = 610 show a dominant peak at St = 0.19 and two minor peaks
at lower frequencies of St= 0.08 and 0.028. Thus, although wake vortex structures
are altered by free-stream turbulence, the natural shedding mechanism appears to be
still relevant at supercritical Reynolds numbers. At the higher free-stream turbulence
intensity (I = 0.25) the Reynolds number decreases to 241 and is comparable to
case 3. However, in contrast to case 3 shown in figure 13, the spectra for case 6
in figure 14 show no sign of a distinct vortex shedding frequency. This suggests
that an early onset of vortex shedding is promoted only at modest levels of free-
stream turbulence. Enhanced levels of free-stream turbulence can hinder the shedding
process.

3.4. Turbulence modulation in the wake

First we will consider the distribution of the total kinetic energy in the vicinity of
the particle. The objective here is to determine to what extent free-stream turbulence
modifies the distribution of kinetic energy in the wake. The total kinetic energy is
computed as

Kt = 1
2
〈〈u · u〉〉, (3.2)

where u defines the fluid velocity field and 〈〈 〉〉 indicates an average over time and
along the azimuthal direction. The total kinetic energy is then scaled by the similarly
defined total kinetic energy of the free stream, K0

t

K0
t = 1

2

〈〈∣∣V 2
r

∣∣〉〉, (3.3)

where V r = V + U(Xp(t)) is the instantaneous relative velocity measured at the centre
of the particle. Thus in this scaling the total kinetic energy of the fluid in the absence
of the particle is unity. The distribution of total kinetic energy for case 1 is shown
in figure 15. Also shown in the figure is the corresponding kinetic energy distribution
for the uniform flow. The loss of energy in the near-wake region can be seen from
the low values of the contours. The recovery of energy is more rapid in the case
of turbulent inflow. The distribution for the other cases considered is qualitatively
similar and therefore will not be presented here (see Bagchi 2002). The above result
is clearly consistent with the reduction in wake length and the lower wake deficit
observed earlier for the turbulent inflow.

The variation of the total kinetic energy along the x-axis in the particle wake
is shown in figure 16. The results for the three different particle sizes are presented
separately and the effect of increasing the free-stream turbulence intensity is presented.
For comparison, the results for the corresponding uniform inflow are also shown
(dashed lines), which we shall consider first. From the figure it is evident that recovery
of total kinetic energy and approach to free-stream condition slows down with
increasing 〈Rer〉, provided the Reynolds number is less than about 280. The reduction
is more pronounced as 〈Rer〉 is increased from about 58 to 107, than from 114 to
261. With the onset of unsteady vortex shedding, however, the enhanced mixing in
the wake significantly accelerates the approach to free stream.

For the small particle (d/η = 1.53), free-stream turbulence promotes more rapid
recovery of the total kinetic energy. With increasing turbulence intensity from I = 0.1
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Figure 15. Contours of the total kinetic energy scaled by the free-stream total kinetic energy
Kt/K

0
t for case 1 (d/η = 1.53, I = 0.1, 〈Rer〉 = 107). (a) Uniform flow, (b) turbulent inflow.

to I = 0.2 the recovery is further accelerated. The rapid recovery is clearly due to
enhanced mixing arising from the dominant wake oscillation. For the intermediate
particle (d/η = 3.84) as well, free-stream turbulence significantly accelerates energy
recovery in the wake. Interestingly, at the higher turbulence level of I = 0.25, the
wake energy recovery is reduced, contrary to the behaviour for the smaller particle.
This reduction is due to the fact that at the lower turbulent intensity (I = 0.1,

〈Rer〉 = 261) free-stream turbulence has induced vortex shedding, while at the lower
〈Rer〉 corresponding to I =0.25 the vortex shedding in the wake is still suppressed
thereby reducing the level of mixing in the wake.

At 〈Rer〉 =610 wake recovery is quite rapid, even for a uniform flow, due to the
presence of natural vortex shedding. Thus, for case 5 (d/η = 9.59, I = 0.1, 〈Rer〉 = 610),
the acceleration of energy recovery in the wake due to free-stream turbulence is not
as significant as that observed for the smaller particles. As the turbulence intensity is
increased to 0.25 (case 6), the recovery is faster in the near wake, but slower further
downstream. This trend is because in case 6, the near-wake oscillation increases, but
the shed vortices quickly dissipate downstream. However, compared with the uniform
flow at 〈Rer〉 = 241, free-stream turbulence in case 6 contributes to a significant energy
recovery in the wake.

The total kinetic energy can be divided into a contribution from the time-averaged
mean flow and a contribution from fluctuations about the mean. The mean flow
contribution pertains to the mean relative velocity between the particle and the
free stream, and the resulting mean wake behind the particle. The kinetic energy
contribution from fluctuations is of greater interest as it focuses on how the free-
stream fluctuations are modulated in the particle wake. The kinetic energy due to
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Figure 16. Total kinetic energy Kt/K
0
t along the x-axis. (a) Cases 1 and 2 (d/η =1.53),

(b) cases 3 and 4 (d/η = 3.84), (c) cases 5 and 6 (d/η =9.59). Thick lines are for I = 0.1, and thin
lines for I = 0.2 or 0.25. Solid lines indicate turbulent flow, dashed lines indicate uniform flow.

fluctuations is defined as

Kf = 1
2
〈〈|u − 〈u〉|2〉〉 , (3.4)

where u − 〈u〉 is the instantaneous velocity fluctuation about the time-average, 〈u〉.
Note that the above definition includes an average over the azimuthal direction as
well. The fluctuating kinetic energy Kf is normalized by the free-stream fluctuating
kinetic energy K0

f , defined as

K0
f = 1

2
〈|U − 〈U〉|2〉 , (3.5)

where U − 〈U〉 is the fluctuation in the ambient turbulence measured at the centre of
the particle Xp(t).

In figure 17 the contours of Kf /K0
f are shown on a plane passing through the

x-axis and by definition the distribution is symmetric about the wake centreline. The
observed maximum value of Kf /K0

f is also presented in the figure and it indicates the
degree to which the fluctuation energy is enhanced in the wake. Note that in all cases,
far from the particle Kf /K0

f approaches the free-stream value of 1.0. For all three
particle sizes, at the lower free-stream turbulent intensity of I =0.1, fluctuating energy
Kf /K0

f is enhanced in the wake. For the smallest particle considered (case 1; frame a),
the increase in Kf /K0

f is primarily due to wake oscillation. At the intermediate size of
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Figure 17. Distribution of the fluctuating turbulent kinetic energy normalized by the
free-stream fluctuating kinetic energy, Kf /K0

f . (a) Case 1 (d/η =1.53, I = 0.1, 〈Rer〉 = 107),

(b) case 3 (d/η = 3.84, I = 0.1, 〈Rer〉 = 261), (c) case 4 (d/η = 3.84, I = 0.25, 〈Rer〉 = 114),
(d) case 5 (d/η =9.59, I = 0.1, 〈Rer〉 = 610), (e) case 6 (d/η =9.59, I = 0.25, 〈Rer〉 = 241).

d/η =3.84 (case 3; frame b), the level of velocity fluctuation further increases, since
the wake starts shedding vortices in addition to oscillating. For the larger particle of
d/η =9.59 (case 5; frame d), the local increase in fluctuating kinetic energy is as large
as 18 times the free-stream energy. Such a substantial increase is due to the strong
amplification of the vortex shedding process.
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Figure 18. Contours of RMS velocity fluctuation scaled by the free-stream value for (a, b)
case 3 (d/η = 3.84, I = 0.1, 〈Rer〉 = 261) and (c, d) case 4 (d/η = 3.84, I =0.25, 〈Rer〉 = 114).
(a) Streamwise component (u′

x/U ′
x) for case 3, (b) cross-stream component (u′

ρ/U ′
ρ) for case 3.

(c) Streamwise component (u′
x/U ′

x) for case 4, (d) cross-stream component (u′
y/U ′

y) for case 4.

The case of the higher turbulence intensity is also shown in the figure. It is interesting
to note that at the higher intensity of I = 0.25 the fluctuating energy Kf /K0

f is sub-
stantially damped over the entire wake for the intermediate size of d/η = 3.84 (case 4;
frame c). The peak value of 1.0 is approached only away from the particle in the free
stream. At d/η = 9.59 and I = 0.25 (case 6; frame e), Kf is only marginally increased
compared to K0

f . This suggests that at low turbulent intensity, the level of velocity
fluctuation in the wake is enhanced mostly by wake oscillation at low 〈Rer〉 and by
natural vortex shedding at high 〈Rer〉. As the intensity of free-stream turbulence is
increased, wake oscillation does not increase proportionately, and at higher 〈Rer〉 the
natural shedding can be disrupted. As a result, either a reduction or only a marginal
increase in wake fluctuation energy is observed at the higher turbulent intensity.

Free-Stream turbulence at inflow is isotropic in nature; however, the mean relative
velocity between the free stream and the particle introduces a preferred direction.
Thus fluctuation in the neighbourhood of the particle will cease to be isotropic. We
now address the statistical departure from isotropy by investigating the streamwise
and cross-stream velocity fluctuations separately. These results for the intermediate
and large particles are presented in figures 18 and 19, where the streamwise and
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Figure 19. Same as figure 18 but for the larger particle (case 5: d/η = 9.59, I = 0.1,
〈Rer〉 = 610, (a) streamwise, (b) cross-stream) and (case 6: d/η = 9.59, I = 0.25, 〈Rer〉 = 241,
(c) streamwise, (d) cross-stream).

cross-stream RMS fluctuations are scaled by the free-stream streamwise and cross-
stream RMS fluctuations. The RMS streamwise and cross-stream velocity fluctuations,
u′

x and u′
ρ , are defined as

u′
x =

√
〈〈(ux − 〈ux〉)2〉〉 , u′

ρ =
√

〈〈(uρ − 〈uρ〉)2〉〉 , (3.6)

where uρ is the radial velocity component in a cylindrical coordinate whose centre
coincides with the centre of the particle, and the axial direction coincides with the
streamwise direction x. Note that 〈〈 〉〉 denotes an average in time as well as over the
azimuthal direction. Their free-stream counterparts, U ′

x and U ′
ρ , are correspondingly

given by

U ′
x =

√
〈〈(Ux − 〈Ux〉)2〉〉 , U ′

ρ =
√

〈〈(Uρ − 〈Uρ〉)2〉〉 , (3.7)

where U(Xp(t)) is the instantaneous ambient turbulent velocity measured at the centre
of the particle. The normalized RMS fluctuations approach unity and hence statistical
isotropy away from the particle. However, near the particle equi-partitioning of energy
is clearly broken, mainly in the particle wake and to a lesser extent ahead of the
particle. At the lower free-stream intensity, both the streamwise and cross-stream
fluctuations are enhanced in the near wake. The increase in streamwise velocity
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Figure 20. Root-mean square of (a) streamwise (u′
x/U ′

x) and (b) cross-stream (u′
ρ/U ′

ρ) fluctua-
tions along the x axis. ——, Case 1 (d/η = 1.53, I = 0.1, 〈Rer〉 = 107); - - - - - -, case 3
(d/η = 3.84, I =0.1, 〈Rer〉 = 261); –··–··–, case 5 (d/η =9.59, I = 0.1, 〈Rer〉 = 610); · · · · ·, case
6 (d/η = 9.59, I = 0.25, 〈Rer〉 = 241).

fluctuation is substantially more than that of cross-stream component. In fact, in
case 3 at 〈Rer〉 = 261 the enhancement in cross-stream fluctuation is marginal and
limited to only a small region in the wake; over the bulk of the wake cross-stream
fluctuation is damped. The enhancement in streamwise and cross-stream fluctuations
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Figure 21. Comparison of the present DNS results with the experimental results of Wu &
Faeth (1994a, b). Root-mean square of streamwise (solid lines and filled symbols) and
cross-stream (broken lines and open symbols) fluctuations along the axis of the sphere
normalized by the free-stream RMS are shown. Lines are the present results and symbols
represent data read from Wu & Faeth. (a) Case 1 (d/η = 1.53, I = 0.1, 〈Rer〉 = 107) and
(b) case 5 (d/η = 9.59, I = 0.1, 〈Rer〉 = 610). Note that the experimental data on cross-stream
RMS for (b) are obtained from Wu & Feath (1994b). For all other cases, data are obtained
from Wu & Faeth (1994a). The experimental data for case 1 correspond to d/η = 1.25, Ĩ = 0.04,
〈Rer〉 = 135, and for case 5 to d/η = 5.9, Ĩ = 0.04, 〈Rer〉 = 610.

is associated with early onset (in case 3) or reinforcement (in case 5) of natural
vortex shedding by free-stream turbulence. When the free-stream turbulent intensity
is increased to I = 0.25, for the largest particle (case 6), cross-stream fluctuations
are again comparatively damped. The streamwise velocity fluctuations, although not
damped, show a reduction in the level of enhancement. Similar behaviour is observed
for the intermediate (case 4) as well as for the small particle (case 2; not shown here).
The Reynolds numbers for cases 3 and 6 are comparable and a comparison of these
two cases illustrates the role of free-stream intensity. Although case 6 corresponds to
a larger particle, the corresponding RMS fluctuation is weaker, suggesting that vortex
shedding (and in particular its early onset) is somewhat suppressed by the presence
of very strong free-stream turbulence.

Figure 20 shows the normalized streamwise and cross-stream RMS fluctuations
u′

x/U ′
x and u′

ρ/U ′
ρ along the x-axis. An extended region both upstream and

downstream of the particle is shown. This figure provides some insight into the
extent to which the presence of the particle influences the fluctuations downstream.
First we note that the cross-stream RMS approaches the free-stream value faster
than the streamwise RMS. In other words, the streamwise fluctuations persist for a
longer distance downstream of the particle compared to the cross-stream fluctuations.
As the free-stream intensity is increased to 0.25 (case 6, shown in the figure), both
the streamwise and cross-stream RMS in the wake quickly approach the free-stream
condition. It can be concluded that at low turbulence intensity anisotropy in the
particle wake persists for a longer distance, whereas at higher intensity the wake is
shortened and the isotropy of the free stream is quickly recovered.

In closing we discuss a comparison of the present DNS results on RMS fluctuations
with the experimental results of Wu & Faeth (1994a, b) in figure 21. Normalized
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fluctuations u′
x/U ′

x and u′
ρ/U ′

ρ are shown for case 1 (d/η = 1.53, I = 0.1, 〈Rer〉 = 114)
and case 5 (d/η = 9.59, I = 0.1, 〈Rer〉 =610). The experimental conditions of Wu &
Faeth (1994a, b) are comparable to the present simulations; they considered a
stationary particle subjected to homogeneous turbulence, although the microscale
Reynolds number of the free-stream turbulence was different. Agreement between
their experimental measurement and the results from the present DNS study is
quite good. For the case of d/η = 1.53, both the streamwise and cross-stream RMS
fluctuations are in good agreement. For the larger particle as well the cross-stream
and streamwise fluctuations are in agreement, with the exception that the streamwise
fluctuations in the experimental data are slightly higher near the particle, perhaps
because the free-stream turbulence intensity in their experiment is about 4% and
hence lower than the present case of about 10% intensity.

4. Summary and conclusions
The present direct numerical simulations considered the interaction of a single

isolated stationary spherical particle with free-stream isotropic turbulence. The particle
Reynolds numbers in the simulations range from about 50 to 600, the particle diameter
is varied from about 1.5 to 10 times the Kolmogorov scale, and the free-stream
turbulent intensity is 10% to 25% of the mean relative velocity. The pseudospectral
methodology employed here resolves all the scales of free-stream turbulence and
additional small scales generated in the shear layers and wake behind the particle.
In order to assess the role of free-stream turbulence, for each of the turbulent cases
considered a companion simulation was also performed, at the same mean Reynolds
number, but in a uniform flow. The methodology and the results presented here are
the first of their kind. A companion paper (Bagchi & Balachandar 2003) addressed
in detail the effect of free-stream turbulence on the hydrodynamic force exerted
on the particle. The purpose of this paper is to study the effect of free-stream
turbulence on the particle wake and vortex shedding, and the modulation of free-
stream turbulence in the particle wake. The computational setup and the parameters
used in the present DNS are comparable to those employed by Wu & Faeth (1994a, b)
in their experiments. It is shown that the DNS results are in good agreement with the
corresponding experimental measurements. The major conclusions that can be drawn
from this investigation are as follows.

(a) In a turbulent ambient flow the length of the mean (time-averaged) wake
is reduced. The mean velocity profile shows that in the presence of free-stream
turbulence the wake velocity deficit is reduced and the wake becomes flatter. The
effect of free-stream turbulence is substantial at higher particle Reynolds numbers.

(b) In agreement with experimental observation (Wu & Faeth 1994a), the mean
velocity profile in the particle wake in a turbulent free stream behaves like a self-
preserving laminar wake.

(c) For mean particle Reynolds numbers below about 210, the effect of free-stream
turbulence is to induce wake oscillation. Although vortical structures are occasionally
shed, at such Reynolds numbers there is no regular vortex shedding. For Reynolds
numbers below criticality (from 210 to about 280) free-stream turbulence promotes
early onset of vortex shedding. The structure of wake vortices in the subcritical regime
is somewhat different from that of natural shedding. At these intermediate Reynolds
numbers the wake shows both oscillation and vortex shedding. For Reynolds numbers
greater than 280, free-stream turbulence enhances the intensity of the unsteady vortex
shedding process. However, unlike in a uniform flow, the vortices in the turbulent
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flow do not maintain their integrity for a long time. Their evolution is more chaotic
and they quickly dissipate downstream. At elevated levels of free-stream turbulence,
there is evidence to suggest that free-stream turbulence, instead of aiding, can hinder
and suppress the shedding process.

(d) A spectral analysis of the velocity traces in the wake suggests that for the case
of low turbulence intensity, the amplitude of oscillation increases at all frequencies
in the streamwise velocity component. The cross-stream component shows amplitude
increase for frequencies above the shedding frequency. For the case of the higher
turbulence intensity, no substantial increase in oscillation is observed.

(e) The effect of the particle on free-stream kinetic energy is studied in terms of
both total and fluctuating energy. The total energy of the flow is significantly reduced
in the wake due to wake deficit. In a turbulent ambient flow, the total energy in the
wake is more rapidly recovered due to enhanced mixing.

(f) At low levels of free-stream turbulence, the fluctuating kinetic energy shows
substantial enhancement in the wake, indicating local augmentation of turbulence. For
the smallest particle considered, this enhancement is purely due to wake oscillation,
whereas for the largest particle it is mostly due to vortex shedding. As the intensity
of free-stream turbulence is increased, free-stream turbulence interferes with the wake
vortex shedding process and as a result fluctuating kinetic energy in the wake is either
damped or marginally increased.

(g) The fluctuating kinetic energy in the wake is not equi-partitioned among the
streamwise and cross-stream components. The RMS streamwise fluctuation in the
wake compared with that in the free-stream increases for all particle sizes and
turbulence intensities considered here. On the other hand, the RMS cross-stream
fluctuation increases only at the low turbulence intensity, and decreases at the higher
turbulence intensity. The streamwise RMS, although not reduced, shows a reduction
in enhancement with increasing free-stream intensity. Furthermore, at low levels of
free-stream turbulence, statistical anisotropy in the particle wake persists for a longer
distance downstream, whereas at higher free-stream intensity the statistical isotropy
of the free-stream is quickly recovered.

The research is supported by the ASCI Center for Simulation of Advanced
Rockets at the University of Illinois at Urbana-Champaign by the US Department
of Energy grant (B341494). Computational facilities from the National Center for
Supercomputing Applications, UIUC are greatly acknowledged.

REFERENCES

Bagchi, P. 2002 Particle dynamics in inhomogeneous flows at moderate to high Reynolds numbers.
PhD thesis, Department of Theoretical and Applied Mechanics, University of Illinois at
Urbana-Champaign.

Bagchi, P. & Balachandar, S. 2002 Steady planar straining flow past a rigid sphere at moderate
Reynolds number. J. Fluid Mech. 466, 365–407.

Bagchi, P. & Balachandar, S. 2003 Effect of turbulence on the drag and lift of a particle. Phys.
Fluids 15, 3496–3513.

Boivin, M., Simonin, O. & Squires, K. D. 1998 Direct numerical simulation of turbulence modu-
lation by particles in isotropic turbulence. J. Fluid Mech. 375, 235–263.

Brucato, A., Grisafi, F. & Montante, G. 1998 Particle drag coefficients in turbulent fluids. Chem.
Engng Sci. 53, 3295.

Chen, J.-H. & Faeth, G. M. 2000 Continuous-phase properties of homogeneous particle-laden
turbulent flows. AIAA J. 39, 180–183.



Response of a particle wake to a turbulent flow 123

Chen, J.-H., Wu, J.-S. & Faeth, G. M. 2000 Turbulence generation in homogeneous particle-laden
flows. AIAA J. 38, 636–642.

Clift, R., Grace, J. R. & Weber, M. E. 1978 Bubbles, Drops and Particles. Academic.

Elghobashi, S. E. & Truesdell, G. C. 1992 Direct simulation of particle dispersion in decaying
isotropic turbulence. J. Fluid Mech. 242, 655–671.

Gore, R. A. & Crowe, C. T. 1989 The effect of particle size on modulating turbulent intensity. Intl
J. Multiphase Flow 15, 279–285.

Hetsroni, G. 1989 Particle–turbulence interaction. Intl J. Multiphase Flow 15, 735–746.

Johnson, T. A. & Patel, V. C. 1999 Flow past a sphere up to a Reynolds number of 300. J. Fluid
Mech. 378, 19–70.

Kulick, J. D., Fessler, J. R. & Eaton, J. K. 1994 Particle response and turbulence modification in
fully developed channel flow. J. Fluid Mech. 277, 109–134.

Langford, J. A. 2000 Toward ideal larger-eddy simulation. PhD Thesis, Department of Theoretical
and Applied Mechanics, University of Illinois at Urbana-Champaign.

Longmire, E. K. & Eaton, J. K. 1992 Structure of a particle-laden round jet. J. Fluid Mech. 236,
217–257.

Magarvey, R. H. & Bishop, R. L. 1961 Transition ranges for three-dimensional wakes. Can. J.
Phy. 39, 1418–1422.

Mittal, R. 2000 Response of the sphere wake to free-stream fluctuations. Theore. Comput. Fluid
Dyn. 13, 397–419.

Mittal, R. & Balachandar, S. 1996 Direct numerical simulation of flow past elliptic cylinders.
J. Comput. Phys. 124, 351–367.

Natarajan, R. & Acrivos, A. 1993 The instability of the steady flow past spheres and disks.
J. Fluid Mech. 254, 323–344.

Pan, Y. & Bannerjee, S. 1997 Numerical investigation of the effects of large particles on wall
turbulence. Phys. Fluids 9, 3786–3807.

Parthasarathy, R. N. & Faeth, G. M. 1990 Turbulence modulation in homogeneous dilute
particle-laden flows. J. Fluid Mech. 220, 485–514.

Squires, K. D. & Eaton, J. K. 1991 Measurements of particle dispersion from direct numerical
simulations of isotropic turbulence. J. Fluid Mech. 226, 1–35.

Tomboulides, A. G. & Orszag, S. A. 2000 Numerical investigation of transitional and weak
turbulent flow past a sphere. J. Fluid Mech. 416, 45–73.

Tsuju, Y., Morikawa, Y. & Shiomi, H. 1984 LDV measurement of an air-solid two-phase flow in
a vertical pipe. J. Fluid Mech. 139, 417–434.

Tsuji, Y., Morikawa, Y., Tanaka, T., Karimine, K. & Nishida, S. 1988 Measurement of an
axisymmetric jet laden with coarse particles. Intl J. of Multiphase Flow 14, 565–574.

Wang, L.-P. & Maxey, M. R. 1993 Settling velocity and concentration distribution of heavy particles
in homogeneous isotropic turbulence. J. Fluid Mech. 256, 27–68.

Wu, J.-S. & Faeth, G. M. 1994a Sphere wakes at moderate Reynolds numbers in a turbulent
environment. AIAA J. 32, 535–541.

Wu, J.-S. & Faeth, G. M. 1994b Effect of ambient turbulence intensity on sphere wakes at
intermediate Reynolds numbers. AIAA J. 33, 171–173.

Zhou, J., Adrian, R. J., Balachandar, S. & Kendall, T. M. 1999 Mechanism for generating
coherent packets of hairpin vortices in near wall turbulence. J. Fluid Mech. 387, 353–396.


